Unit: mm

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS III)

TPCF8201

Notebook PC Applications Portable Equipment Applications

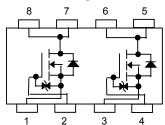
• Low drain-source ON resistance: RDS (ON) = $38 \text{ m}\Omega$ (typ.)

• High forward transfer admittance: $|Y_{fs}| = 5.4 \text{ S (typ.)}$

• Low leakage current: $IDSS = 10 \mu A (max) (VDS = 20 V)$

• Enhancement-mode: $V_{th} = 0.5 \text{ to } 1.2 \text{ V}$

 $(V_{DS} = 10 \text{ V}, I_{D} = 200 \text{ } \mu\text{A})$


Absolute Maximum Ratings (Ta = 25°C)

Cha	racteristics	Symbol	Rating	Unit	
Drain-source volta	ge	V_{DSS}	20	V	
Drain-gate voltage	(R _{GS} = 20 kΩ)	V_{DGR}	20	V	
Gate-source voltage	je	V _{GSS}	±12	V	
Drain current	DC (Note 1)	I _D	3	Α	
Diam current	Pulse (Note 1)	I _{DP}	12	A	
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	1.35		
(t = 5 s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D (2)}	12	W	
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	0.53	VV	
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	P _{D (2)}	20		
Single pulse avala	nche energy (Note 4)	E _{AS}	1.46	mJ	
Avalanche current		I _{AR}	1.5	Α	
Repetitive avalanc Single-device value		Ear	0.11	mJ	
Channel temperatu	ıre	T _{ch}	150	°C	
Storage temperatu	re range	T _{stg}	-55~150	°C	

Weight: 0.011 g (typ.)

JEDEC JEITA TOSHIBA

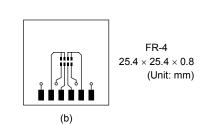
Circuit Configuration

2-3U1B

Note: For Notes 1 to 6, refer to the next page.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

This transistor is an electrostatic-sensitive device. Handle with caution.


Thermal Characteristics

Characteristics		Symbol	Max	Unit	
Thermal resistance, channel to ambient (t = 5 s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	92.6	°C/W	
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	111.6		
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	235.8	°C/W	
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	378.8	C/VV	

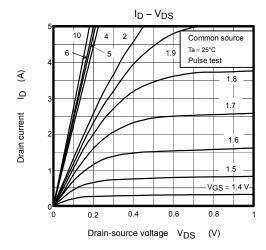
Marking (Note 5)

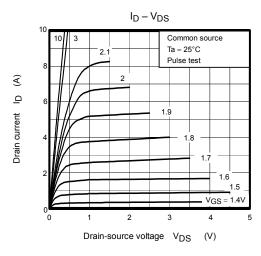
- Note 1: Ensure that the channel temperature does not exceed 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (b) (b) Device mounted on a glass-epoxy board (b)

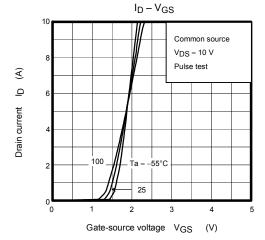
FR-4 25.4 × 25.4 × 0.8 (Unit: mm)

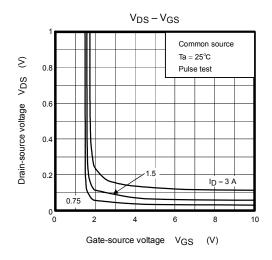
25.4

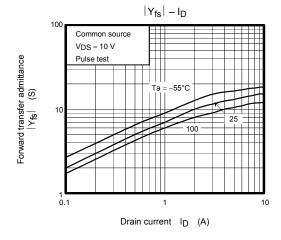
- Note 3: a) The power dissipation and thermal resistance values are shown for a single device. (During single-device operation, power is only applied to one device.)
 - b) The power dissipation and thermal resistance values are shown for a single device. (During dual operation, power is evenly applied to both devices.)
- Note 4: $V_{DD} = 16 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.5 mH, $R_G = 25 \Omega$, $I_{AR} = 1.5 \text{ A}$
- Note 5: Repetitive rating: Pulse width limited by maximum channel temperature
- Note 6: "●" on the lower left of the marking indicates Pin 1.

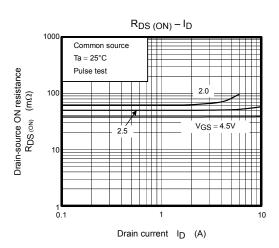

Electrical Characteristics (Ta = 25°C)

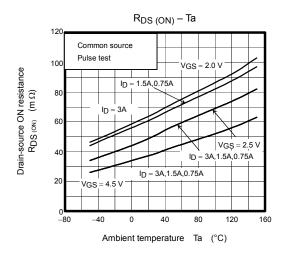

Ch	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cui	rrent	I _{GSS}	$V_{GS} = \pm 10 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Drain cut-off curr	ent	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V	_	_	10	μА
Drain source bre	akdown voltage	V (BR) DSS	$I_D = 10$ mA, $V_{GS} = 0$ V	20	_	_	V
Dialii-source bre	akuowii vollage	V (BR) DSX	$I_D = 10 \text{ mA}, V_{GS} = -12 \text{ V}$	8	8 — 0.5 — 1.2 — 62 100 — 50 66 — 38 49 2.7 5.4 — 590 — 70 — 85		v
Gate threshold v	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_D = 200 \mu\text{A}$	0.5	_	1.2	٧
		R _{DS (ON)}	$V_{GS} = 2.0 \text{ V}, I_D = 1.5 \text{ A}$	_	62	100	
Drain-source ON resistance	R _{DS} (ON)	$V_{GS} = 2.5 \text{ V}, I_D = 1.5 \text{ A}$	_	50	66	mΩ	
Forward transfer admittance		R _{DS} (ON)	$V_{GS} = 4.5 \text{ V}, I_D = 1.5 \text{ A}$	_	38		49
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 1.5 A	2.7 5.4 —		_	S
Input capacitance		C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	590	_	pF
Reverse transfer capacitance		C _{rss}		_	70	_	
Output capacitance		C _{oss}		_	85	_	
	Rise time	t _r	V _{GS} 5 V	_	3.0	_	
Outitals as time a	$ \begin{array}{c} \text{cut-off current} \\ \text{cut-off current} \\ \text{source breakdown voltage} \\ \hline \\ \text{V (BR) DSS} \\ \hline \\ \text{V (BR) DSS} \\ \hline \\ \text{ID = 10 mA, V}_{\text{GS}} = 0 \text{ V} \\ \hline \\ \text{V (BR) DSX} \\ \hline \\ \text{ID = 10 mA, V}_{\text{GS}} = -12 \text{ V} \\ \hline \\ \text{8} \\ \hline \\ \text{hreshold voltage} \\ \hline \\ \text{Vth} \\ \hline \\ \text{VpS = 10 V, ID = 200 } \mu \text{A} \\ \hline \\ \text{VpS = 10 V, ID = 200 } \mu \text{A} \\ \hline \\ \text{O.5} \\ \hline \\ \text{RDS (ON)} \\ \hline \\ \text{VGS = 2.5 V, ID = 1.5 A} \\ \hline \\ \text{RDS (ON)} \\ \hline \\ \text{VGS = 2.5 V, ID = 1.5 A} \\ \hline \\ \text{RDS (ON)} \\ \hline \\ \text{VGS = 4.5 V, ID = 1.5 A} \\ \hline \\ \text{Capacitance} \\ \hline \\ \text{Ciss} \\ \hline \\ \text{Set transfer capacitance} \\ \hline \\ \text{Ciss} \\ \hline \\ \text{Set transfer capacitance} \\ \hline \\ \text{Ciss} \\ \hline \\ \text{Coss} \\ \hline \\ \text{Rise time} \\ \hline \\ \hline \\ \text{Turn-on time} \\ \hline \\ \text{Turn-on time} \\ \hline \\ \text{Turn-on time} \\ \hline \\ \text{Turn-off time} \\ \hline \\ \text{Turn-off time} \\ \hline \\ \text{Coff} \\ \hline \\ \text{Outy $\leq 1\%$, $t_{\text{W}} = 10 \text{ µs} \\ \hline \\ \text{VOD} \approx 10 \text{ V}, $t_{\text{W}} = 5 \text{ V}, $t_{\text{W}} = 10 \text{ µs} \\ \hline \\ \text{VDD} \approx 16 \text{ V}, $t_{\text{W}} = 5 \text{ V}, $t_{\text{W}} = 10 \text{ µs} \\ \hline \\ \text{Coss} \\ \hline \\ C$	_					
Switching time	Fall time	t _f	, α	_	4.4	_	ns
	Turn-off time	t _{off}		_	26	_	
Total gate charge (gate-source plus		Qg	V _{DD} ≈ 16 V. V _G s = 5 V.	_ 7.5 _			
Gate-source charge1		Q _{gs1}			1.3	_	nC
Gate-drain ("mille	er") charge	Q _{gd}			2.1	_	

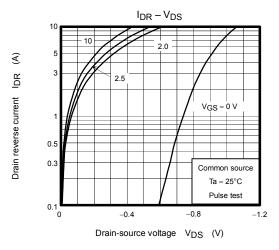

Source-Drain Ratings and Characteristics (Ta = 25°C)

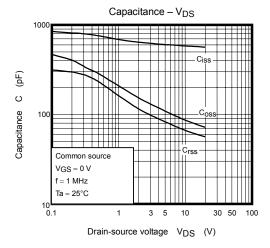

Characterist	ics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	12	Α
Forward voltage (diode)		V _{DSF}	I _{DR} = 3.0 A, V _{GS} = 0 V	_	_	-1.2	V

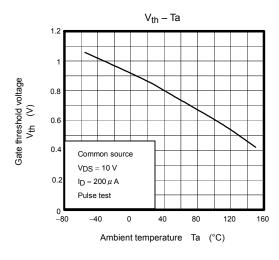

3 2007-01-16

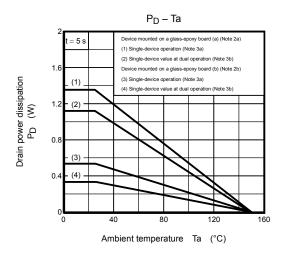


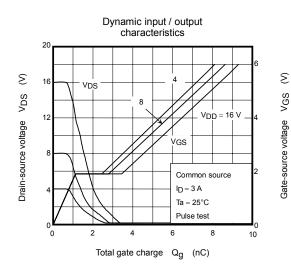


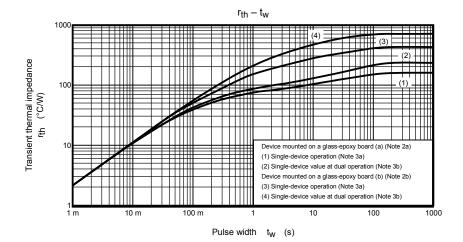


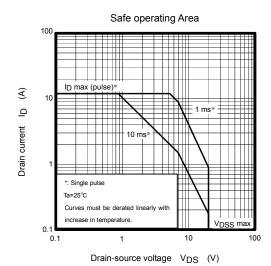





4







6 2007-01-16

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.